
Chapter 6

Radiation

In this chapter we will discuss the emission of electromagnetic radiation from ele-

mentary sources. A stationary charge yields a static electric field, but it does not

radiate. Similarly, a uniformly moving charge (a current) yields a static magnetic

field, but it does not radiate. It is the acceleration of charge that gives rise to ra-

diation. The smallest radiating unit is a dipole, an electromagnetic point source.

According to linear response theory, a point source excitation yields the system

response function, from which we can calculate the fields of more complicated

sources by using the superposition principle. The system response function is

also referred to as the Green function.

6.1 Green functions

Before calculating the fields radiated by elementary sources let us discuss an im-

portant mathematical concept, namely the concept of the Green function. Consider

the following general, inhomogeneous equation:

LA(r) = B(r) . (6.1)

L is a linear operator acting on the vectorfield A representing the unknown re-

sponse of the system. The vectorfield B is a known source function and makes

the differential equation inhomogeneous. A well-known theorem for linear differen-

tial equations states that the general solution is equal to the sum of the complete
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72 CHAPTER 6. RADIATION

homogeneous solution (B=0) and a particular inhomogeneous solution. Here, we

assume that the homogeneous solution (A0) is known. We thus need to solve for

an arbitrary particular solution.

Usually it is difficult to find a solution of Eq. (6.1) and it is easier to consider

the special inhomogeneity δ(r−r′), which is zero everywhere, except in the point

r = r′. Then, the linear equation reads as

LGi(r, r
′) = ni δ(r− r′) (i = x, y, z) , (6.2)

where ni denotes an arbitrary constant unit vector. In general, the vectorfield Gi is

dependent on the location r′ of the inhomogeneity δ(r−r′). Therefore, the vector r′

has been included in the argument of Gi. The three equations given by Eq. (6.2)

can be written in closed form as

L
↔

G(r, r′) =
↔

I δ(r− r′) , (6.3)

where the operator L acts on each column of
↔

G separately and
↔

I is the unit tensor.

The function
↔

G fulfilling Eq. (6.3) is known as the dyadic Green function. A dyad is

simply a tensor of order two, and is the result of the outer product of two vectors.

In a next step, assume that Eq. (6.3) has been solved and that
↔

G is known.

Postmultiplying Eq. (6.3) with B(r′) on both sides and integrating over the volume

V in which B 6=0 gives
∫

V

L
↔

G(r, r′)B(r′) dV ′ =

∫

V

B(r′) δ(r− r′) dV ′ . (6.4)

The right hand side simply reduces to B(r) and with Eq. (6.1) it follows that

LA(r) =

∫

V

L
↔

G(r, r′)B(r′) dV ′ . (6.5)

If on the right hand side the operator L is taken out of the integral, the solution of

Eq. (6.1) can be expressed as

A(r) =

∫

V

↔

G (r, r′)B(r′) dV ′ . (6.6)

Thus, the solution of the original equation can be found by integrating the product

of the dyadic Green function and the inhomogeneity B over the source volume V .
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The assumption that the operators L and
∫

dV ′ can be interchanged is not

strictly valid and special care must be applied if the integrand is not well behaved.

Most often
↔

G is singular at r= r′ and an infinitesimal exclusion volume surround-

ing r= r′ has to be introduced. As long as we consider field points outside of the

source volume V , i.e. r 6∈V , we do not need to consider these tricky issues.

6.2 Scalar and Vector Potentials

The E and B fields define a total of six functions in space and time. It turns out that

these fields are not independent and that one needs fewer functions to uniquely

determine the electromagnetic field. The vector potential A and the scalar po-

tential φ constitute a set of only four functions which, depending on the type of

problem, can be reduced to even fewer functions. These potentials are also of key

importance in quantum mechanics.

Let’s consider Maxwell’s equation ∇ ·B = 0 and replace B by another function.

Because, ∇ · ∇× = 0 we choose B = ∇ × A. Next, we consider Faraday’s law

∇ × E = −∂B/∂t and replace B by ∇ × A. We obtain ∇ × [E + ∂A/∂t] = 0.

Considering that ∇ × ∇ = 0, we set [E + ∂A/∂t] = −∇φ, which yields E =

−∂A/∂t −∇φ. To summarize,

E(r, t) = − ∂

∂t
A(r, t)−∇φ(r, t)

B(r, t) = ∇×A(r, t)

(6.7)

(6.8)

It turns out that these definitions of vector potential A and scalar potential φ are

not unique. If the potentials are replaced by new potentials Ã, φ̃ according to

A → Ã+∇χ and φ→ φ̃− ∂χ/∂t , (6.9)

with χ(r, t) being an arbitrary gauge function, Maxwell’s equations remain unaf-

fected. This is easily seen by introducing the above substitutions in the definitions

of A and φ.
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6.2.1 The Gauges

Any vectorfield F is specified by the definition of ∇·F and ∇×F. A vectorfield with

∇ · F = 0 is called transverse, whereas ∇× F = 0 defines a longitudinal field.

So far, we have defined the curl of A, i.e. ∇ × A = B. However, we did not

specify ∇ · A. The choice of ∇ · A does not affect the fields E and B. Typically

one chooses ∇ · A such that the wave equation for A assumes a simple form

or that favorable symmetries can be exploited. To demonstrate this, we consider

Maxwell’s equation ∇ × H = ∂D/∂t + j0. Using the relations (1.19) we obtain

∇×B− (1/c2)∂E/∂t = µ0[∇×M+ ∂P/∂t+ j0], where the expression in brackets

is the total current density j. Inserting Eqs. (6.7) and (6.8) yields

∇×∇×A +
1

c2
∂2

∂t2
A +

1

c2
∇∂φ

∂t
= µ0 j , (6.10)

with j = [∇×M+ ∂P/∂t + j0], which can be rewritten as

∇2A − 1

c2
∂2

∂t2
A = −µ0 j + ∇

[

∇ ·A +
1

c2
∂φ

∂t

]

. (6.11)

The expression in brackets contains a ∇ · A term, which we can choose as we

wish. Finally, we also express Gauss’ law ∇ · D = ρ0 in terms of A and φ and

obtain

∇ · (∂A/∂t +∇φ) = −ρ/ε0 . (6.12)

There is again a ∇ ·A term that can be arbitrarily chosen.

Lorenz Gauge

In the Lorenz gauge one chooses ∇ ·A = −(1/c2) ∂φ/∂t1, which yields

[

∇2 − 1

c2
∂2

∂t2

]

A = −µ0 j

[

∇2 − 1

c2
∂2

∂t2

]

φ = − 1

ε0
ρ

(6.13)

(6.14)

1This has the form of a continuity equation (A is the current density and φ/c2 is the charge

density).
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Thus, we obtain two decoupled partial differential equations (wave equations) of

the same form for A and φ. Note, that one ends up with the same differential equa-

tions by a proper choice of the gauge function χ in Eq. (6.9).

The advantage of the Lorenz gauge is that the vectorial differential equation for

A is decoupled into a set of three independent scalar differential equations, that

is, each vector component Ai depends only on the source component ji. There is

no mixing of components i ∈ [x, y, z].

Coulomb Gauge

In the Coulomb gauge one chooses ∇ · A = 0. This gauge is also referred to as

the transverse gauge or the minimal coupling gauge. With this choice of gauge

Eqs. (6.11) and (6.12) reduce to

[

∇2 − 1

c2
∂2

∂t2

]

A = −µ0 j +
1

c2
∇∂φ

∂t

∇2 φ = − 1

ε0
ρ . (6.15)

Here, the scalar potential φ is determined by a Poisson equation, that is, there is no

retardation and φ is an instantaneous function. The Coulomb gauge is mostly used

for problems in quantum optics and is less important for this course. There are

many more gauges, which we won’t discuss here. Among them are the Poincaré

gauge, the Landau gauge, and the Weyl gauge. We will be mostly dealing with the

Lorenz gauge.

Note that by going from E, H to A, φwe reduced the field parameters from six to

four (three per vector and one per scalar). It turns out that the four parameters are

still redundant and that they can be reduced even more. One way is to introduce

the so-called Hertz potential Π(r), which has only three components. The vector

and scalar potentials are related to Π as A = (1/c2) ∂Π/∂t and φ = −∇ · Π, re-

spectively. Using so-called Debye potentials is yet another representation of fields,

but these won’t be discussed here.
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6.3 Dipole Radiation

In this section we will derive the electromagnetic field of a dipole source, the small-

est radiating system. Mathematically, the dipole source corresponds to a delta

excitation, and the response to a delta excitation is the Green function discussed

previously. Any source can be thought of as being composed of individual point

sources with different origins. In other words, any macroscopic source volume can

be chopped up into little infinitesimal cubes, each of which carries a current that is

represented by a delta function.

As shown in Fig. 6.1, a dipole is a separation of a pair of charges by an in-

finitesimal distance ds = ns ds. The dipole moment p is defined as

p(t) = q(t) ds . (6.16)

The time derivative of the dipole moment is

∂

∂t
p(t) =

[

∂ q(t)

∂t
ns

]

ds = [j0 da] ds = j0 dV , (6.17)

where [j0 · ns]da is the current flowing through the cross-sectional area da. The

product of da and ds defines the infinitesimal source volume dV .

Let us now consider an arbitrary macroscopic source current density j0(r, t)

that is entirely contained within the volume V . We can express this current density

in terms of a sum of microscopic point current densities. In terms of the Dirac delta

+q

-q

ds da

+ρ

ns

−ρ

ds

ns

Figure 6.1: Illustration of a dipole with moment p = q ds = q dsns. Left: in terms

of discrete point charges q; Right: in terms of charge distributions ρ.
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function δ this sum becomes

j0(r, t) =

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

j0(x
′, y′, z′, t) δ(x− x′) δ(y − y′) δ(z − z′) dx′ dy′ dz′(6.18)

=

∫

V

j0(r
′, t) δ(r− r′) dV ′ , (6.19)

Here, j0(r
′, t)δ(r−r′)dV ′ are elementary point currents. Using Eq. (6.17) we obtain

the current density of an elementary dipole source

j0(r, t) =
∂

∂t
p(t) δ(r− r0) (6.20)

where r0 is the dipole location.

In principle, we can now determine the fields E and H radiated by a dipole p in

free space by inserting (6.20) into the wave equation (2.1). This task is, however,

easier accomplished by replacing E and H by the potentials A and φ, as discussed

previously.

6.3.1 Vector Potential of a Time-Harmonic Dipole

To calculate the fields of a dipole we will use the Lorenz gauge. The appeal of the

Lorenz gauge is its symmetry, that is, there is a scalar wave equation of the form

[∇2 − (1/c2)∂2/∂t2] Ψ = Θ for any of the field components Ax, Ay, Az, φ.

Vector and Scalar Potentials with Harmonic Time Dependence

The differential equations for A and φ in Eqs. (6.13) and (6.14) are valid for arbitrary

time dependence. They are expressed in terms of the total charge and current

densities ρ and j. For time-harmonic fields we set A(r, t) = Re{A(r) exp(−iωt)}
and φ(r, t) = Re{φ(r) exp(−iωt)} and use the Lorenz gauge in the form

∇ ·A(r) = i (k2/ω)φ(r) , (6.21)



78 CHAPTER 6. RADIATION

where k2 = (ω2/c2)µ(ω)ε(ω). This choice allows us to split off the polarization and

magnetization current densities from j and accommodate them in µ and ǫ.2 The

equations for the complex potentials A(r) and φ(r) become

[

∇2 + k2
]

A(r) = −µ0µ j0(r)

[

∇2 + k2
]

φ(r) = − 1

ε0ε
ρ
0
(r)

(6.22)

(6.23)

with ρ
0

and j
0

being the primary (source) charge and current densities, respectively.

Let us consider a time-harmonic dipole p(t) = Re{p exp[−iωt]}, with p being

the complex amplitude. Using complex notation the equations for the components

of the vector potential A become

[

∇2 + k2
]

Ai(r) = iωµ0µ pi δ(r− r′) . (6.24)

where we used Eq. (6.20) for the current density of the dipole field. Let us now

define the scalar Green function as G0 = iAi/(ωµ0µ pi). Then, Eq. (6.24) turns

into
[

∇2 + k2
]

G0(r, r
′) = −δ(r− r′) (6.25)

We have included the origin of the the point source (r′) in the argument of G0 to

remind us where the origin of the point source is. In other words G0(r, r
′) is the

response at r to a dipole source at r′.

In free space, G0(r, r
′) must be point symmetric, because the fields depend

only on the radial distance R = |r − r′| and things don’t change if the coordinate

system is rotated around the origin r = r′. To solve Eq. (6.25) we will try the

following ansatz

RG0 = a1 e
ikR + a2 e

−ikR , (6.26)

which is a superposition of an outgoing and an incoming wave. After inserting

into Eq. (6.25) and integrating on both sides over a small spherical volume ∆V

centered at R = 0 and with radius ro, we obtain
∫

∆V

∇2 1

R
dV + k2

∫

∆V

1

R
dV =

1

a1 + a2
(6.27)

2We assume that in the region of interest the material properties are linear and homogeneous.
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The second term integrates to 2πk2r2o and the first term is calculated as
∫

∆V

∇ ·
[

∇ 1

R

]

dV =

∫

∂∆V

[

∇ 1

R

]

· nR da = −
∫

∂∆V

nR · nR

R2
da = −4π . (6.28)

where we used Gauss’ theorem (1.27). Thus, for ro → 0 we obtain (a1 + a2) =

1 / 4π. Finally, in free-space the radiation released by the point source is not com-

ing back, which implies that we can drop the incoming wave in Eq. (6.26) or, equiv-

alently, set a2 = 0. The solution for the scalar Green function becomes

G0(r, r
′) =

ei k |r−r′|

4π|r−r′| (6.29)

G0 defines the vector potential at r due to a dipole p at r′ according to

A(r) = −iωµ0µ
ei k |r−r′|

4π|r−r′| p . (6.30)

What if the source is not a dipole but an arbitrary current distribution? In this case

we go back to Eq. (6.25) and multiply both sides with µ0µ j0i
(r′), where j

0i
is the

i-th vector component of the total current density j
0
. Integrating both sides over

the source volume V yields

µ0µ

∫

V

[

∇2+ k2
]

G0(r, r
′) j

0i
(r′) dV ′ = −µ0µ

∫

V

δ(r−r′) j
0i
(r′) dV ′

= −µ0µ j0i
(r) , (6.31)

where we used the definition of the delta function. We now assume that the ob-

servation point r is outside the source volume described by the coordinate r′. In

this case, we can swap the sequence of integration and differentiation in Eq. (6.31)

and obtain

[

∇2+ k2
]

µ0µ

∫

V

G0(r, r
′) j

0i
(r′) dV ′ = −µ0µ j0i

(r) . (6.32)

Comparing this equation with Eq. (6.22) we conclude that

A(r) = µ0µ

∫

V

G0(r, r
′) j

0
(r′) dV ′ (6.33)

Thus, the solution for A turns out to be the linear superposition of dipole fields with

different origins r′ and different weights j
0
.
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6.3.2 Electric and Magnetic Dipole Fields

Now that we have derived the vector potential A of an oscillation dipole, we find

the magnetic field using B = ∇×A and the electric field using Maxwell’s equation

E = i(ω/k2)∇×B. Skipping the details of the calculation, we find

E(r) = ω2µ0µ
↔

G0 (r, r
′)p

H(r) = −iω
[

∇×
↔

G0 (r, r
′)
]

p

(6.34)

(6.35)

where we introduced the so-called dyadic Green function
↔

G0 defined as

↔

G0 (r, r
′) =

[

↔

I +
1

k2
∇∇

]

G0(r, r
′) (6.36)

with G0 being the scalar Green function (6.29) and
↔

I being the unit tensor. Notice

that
↔

G0 is a tensor. It is straightforward to calculate
↔

G0 in the major three coordinate

systems. In a Cartesian system
↔

G0 can be written as

↔

G0 (r, r
′) =

exp(ikR)

4πR

[(

1 +
ikR− 1

k2R2

)

↔

I +
3− 3ikR− k2R2

k2R2

RR

R2

]

(6.37)

where R is the absolute value of the vector R = r−r′ and RR denotes the outer

product of R with itself. Equation (6.37) defines a symmetric 3×3 matrix

↔

G0 =







Gxx Gxy Gxz

Gxy Gyy Gyz

Gxz Gyz Gzz






, (6.38)

which, together with Eqs. (6.34) and (6.35), determines the electromagnetic field

of an arbitrary electric dipole p with Cartesian components px, py, pz. The tensor

[∇×
↔

G0] can be expressed as

∇×
↔

G0 (r, r
′) =

exp(ikR)

4πR

k
(

R×
↔

I
)

R

(

i− 1

kR

)

, (6.39)

where R×
↔

I denotes the matrix generated by the cross-product of R with each

column vector of
↔

I .
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Near-fields and Far-fields

The Green function
↔

G0 has terms in (kR)−1, (kR)−2 and (kR)−3. In the far-field, for

which R≫λ, only the terms with (kR)−1 survive. On the other hand, the dominant

terms in the near-field, for which R≪λ, are the terms with (kR)−3. The terms with

(kR)−2 dominate the intermediate-field at R≈λ. To distinguish these three ranges

it is convenient to write
↔

G0 =
↔

GNF +
↔

GIF +
↔

GFF , (6.40)

where the near-field (GNF), intermediate-field (GIF) and far-field (GFF) Green func-

tions are given by

↔

GNF =
exp(ikR)

4πR

1

k2R2

[

−
↔

I +3RR/R2
]

, (6.41)

↔

GIF =
exp(ikR)

4πR

i

kR

[↔

I − 3RR/R2
]

, (6.42)

↔

GFF =
exp(ikR)

4πR

[↔

I −RR/R2
]

. (6.43)

Notice that the intermediate-field is 90◦ out of phase with respect to the near- and

far-field.

Because the dipole is located in a homogeneous environment, all three dipole

orientations lead to fields that are identical upon suitable frame rotations. We

therefore choose a coordinate system with origin at r′ = r0 and a dipole orientation

along the z-axis, i.e. p = pnz (see Fig. 6.2). It is most convenient to represent the

dipole fields in spherical coordinates r = (r, ϑ, ϕ) and in spherical vector compo-

nents E = (Er, Eϑ, Eϕ). In this system the field components Eϕ and Hr, Hϑ are

identical to zero and the only non-vanishing field components are

Er =
p cosϑ

4πε0ε

exp(ikr)

r
k2

[

2

k2r2
− 2i

kr

]

, (6.44)

Eϑ =
p sinϑ

4πε0ε

exp(ikr)

r
k2

[

1

k2r2
− i

kr
− 1

]

, (6.45)

Hϕ = −p sin ϑ

4πε0ε

exp(ikr)

r
k2

[

i

kr
+ 1

] √

ε0ε

µ0µ
. (6.46)

The fact that Er has no far-field term ensures that the far-field is purely trans-

verse. Furthermore, since the magnetic field has no terms in (kr)−3 the near-field
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is dominated by the electric field (see Fig. 6.3). This justifies a quasi-electrostatic

consideration in the region very close to the source.

The Phase of the Dipole Field

It is instructive to also have a look at the phase of the dipole field since close

to the origin it deviates considerably from the familiar phase of a spherical wave

exp[ikr]. The phase of the field is defined relative to the oscillation of the dipole pz.

In Fig. 6.4 we plot the phase of the field Ez along the x-axis and along the z-axis

(c.f. Fig. 6.2). Interestingly, at the origin the phase of the transverse field is 180◦ out

of phase with the dipole oscillation (Fig. 6.4(a)). The phase of the transverse field

then drops to a minimum value at a distance of x ∼ λ/5 after which it increases and

then asymptotically approaches the phase of a spherical wave with origin at the

dipole (dashed line). On the other hand, the phase of the longitudinal field, shown

in Fig. 6.4(b), starts out to be the same as for the oscillating dipole, but it runs

90◦ out of phase for distances z ≫ λ. The reason for this behavior is the missing

far-field term in the longitudinal field (c.f. Equation (6.44). The 90◦ phase shift is

due to the intermediate field represented by the Green function in Eq. (6.42). The

r

E

p

x

y

z

Figure 6.2: The fields of a dipole are most conveniently represented in a spherical

coordinate system (r, ϑ, ϕ) in which the dipole points along the z-axis (ϑ = 0).
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Figure 6.3: Radial decay of the dipole’s transverse and longitudinal fields.

The curves correspond to the absolute value of the expressions in brackets of

Eqs. (6.44) and (6.45), respectively. While both the transverse and the longitudi-

nal field contribute to the near-field, only the transverse field survives in the far-

field. Notice that the intermediate-field with (kr)−2 does not really show up for the

transverse field. Instead the near-field dominates for (kr)< 1 and the far-field for

(kr)>1.

same intermediate field is also responsible for the dip near x ∼ λ/5 in Fig. 6.4(a).

This phase dip is of relevance for the design of multi-element antennas, such as

the Yagi-Uda antennas. It is important to remember that close to the source the

phase of the field does not evolve linearly with distance and that the phase can be

advanced or delayed by small distance variations.

6.3.3 Radiation Patterns and Power Dissipation

To calculate the power radiated by the dipole p we consider a fictitious spherical

surface ∂V of radius Ro centered at the origin of the dipole. According to Poynting’s

theorem discussed in Section 5.1, the net power P̄ radiated corresponds to the flux

of the time-averaged Poynting vector through the enclosing spherical surface (see
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Figure 6.4: Phase of the electric field near the origin. (a) Phase of the transverse

field Ez evaluated along the x-axis. At the origin, the electric field is 180◦ out of

phase with the dipole. The phase drops to a minimum at a distance of x ∼ λ/5. For

larger distances, the phase approaches that of a spherical wave exp[ikr] (dashed

line). (b) Phase of the longitudinal field Ez evaluated along the z-axis. At the origin,

the electric field is in phase with the dipole. At larger distances, the phase is 90◦

out of phase with a spherical wave exp[ikr] (dashed line).

Eq. 5.9)

P̄ =
1

2

∫

∂V

Re {E(r)×H∗(r)}·n da . (6.47)

Because we chose a spherical surface, the normal vector n is a radial vector and

hence we only need to calculate the radial component of 〈S〉. Using Eqs. (6.45)

and (6.46) we find

P̄ =
1

2

∫

∂V

Re
{

EϑH
∗
ϕ

}

r2 sinϑ dϑ dϕ , (6.48)

which yields

P̄ =
p2

4πε0ε

n3ω4

3 c3
=

p2 ω k3

12πε0ε
(6.49)

where p = |p|. We find that the radiated power scales with the fourth power of

the frequency and that only the far-field of the dipole contributes to the net energy

transport.
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To determine the radiation pattern we calculate the power P̄ (ϑ, ϕ) radiated into

an infinitesimal unit solid angle dΩ = sinϑ dϑ dϕ and divide by the total radiated

power P̄

P̄ (ϑ, ϕ)

P̄
=

3

8π
sin2ϑ . (6.50)

Thus, in the far-field most of the energy is radiated perpendicularly to the dipole

moment (see Fig. 6.5) and there is no radiation at all in the direction of the dipole.

6.4 Dipole Radiation in Arbitrary Environments

So far we have considered a dipole in a homogeneous space characterized by µ

and ε. What happens if we place the dipole near a material boundary or enclose it

in a box? Will the dipole still dissipate the same amount of power? The answer is

no. The environment acts back on the dipole and influences its ability to radiate.

According to Poynting’s theorem (cf. Equation 5.6) the radiated power P̄ of any

current distribution with a harmonic time dependence has to be identical to the rate

x 10’000

zz

Figure 6.5: Electric energy density outside a fictitious sphere enclosing a dipole

p = pnz. (Left) Close to the dipole’s origin the field distribution is elongated along

the dipole axis (near-field). (Right) At larger distances the field spreads trans-

versely to the dipole axis (far-field).
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of energy dissipation dW/dt given by

dW

dt
= −1

2

∫

V

Re{j∗
0
· E} dV, (6.51)

V being the source volume. The current density j
0

is either a source current that

generates the fields, or a loss current that is associated with thermal losses. Either

way, j
0

represents both energy sources and energy sinks. If we introduce the

dipole’s current density from Eq. (6.20) we obtain the important result

P̄ =
ω

2
Im

{

p∗·E(r0)
}

(6.52)

where the field E is evaluated at the dipole’s origin r0. This equation can be rewrit-

ten in terms of the Green function by using Eq. (6.34) as

P̄ =
ω3

∣

∣p
∣

∣

2

2c2ε0ε

[

np · Im
{

↔

G (r0, r0)
}

· np

]

, (6.53)

with np being the unit vector in the direction of the dipole moment.

At first sight it seems not possible to evaluate Eq. (6.52) since exp(ikR)/R ap-

pears to be infinite at r = r0. As we shall see this is not the case. We first note that

due to the dot product between p and E we need only to evaluate the component

of E in the direction of p. Choosing p = pnz we calculate Ez as

Ez =
p

4πε0 ε

eikR

R

[

k2 sin2ϑ +
1

R2
(3 cos2ϑ− 1) − ik

R
(3 cos2ϑ− 1)

]

. (6.54)

Since the interesting part is the field at the origin of the dipole, the exponential term

is expanded into a series [exp(ikR) = 1 + ikR+ (1/2)(ikR)2 + (1/6)(ikR)3 + · · · ]
and the limiting case R → 0 is considered. Thus,

dW

dt
= lim

R→0

ω

2
p Im{Ez}=

ω p2

8πε0 ε
lim
R→0

{2

3
k3+R2 (..) + ..

}

=
p2

12π

ω

ε0 ε
k3,

(6.55)

which is identical with Eq. (6.49). Thus, Eq. (6.52) leads to the correct result de-

spite the apparent singularity at R = 0.

The importance of Eq. (6.52) becomes obvious if we consider a dipole in an

inhomogeneous environment, such as an antenna next to the earth surface. The
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rate at which energy is released can still be calculated by integrating the Poynt-

ing vector over a surface enclosing the dipole. However, to do this, we need to

know the electromagnetic field everywhere on the enclosing surface. Because of

the inhomogeneous environment, this field is not equal to the dipole field alone!

Instead, it is the self-consistent field, that is, the field E generated by the superpo-

sition of the dipole field and the scattered field from the environment (see Fig. 6.6).

Thus, to determine the energy dissipated by the dipole we first need to determine

the electromagnetic field everywhere on the enclosing surface. However, by using

Eq. (6.52) we can do the same job by only evaluating the total field at the dipole’s

origin r0.

As illustrated in Fig. 6.6, we decompose the electric field at the dipole’s position

as

E(r0) = E0(r0) + Es(r0) , (6.56)

where E0 and Es are the primary dipole field and the scattered field, respectively.

Introducing Eq. (6.56) into Eq. (6.52) allows us to split the rate of energy dissipa-

tion P = dW/dt into two parts. The contribution of E0 has been determined in

Eqs. (6.49) and (6.55) as

P̄0 =
p2

12π

ω

ε0ε
k3 , (6.57)

Es

E0

p

Figure 6.6: Illustration of dipole radiation in inhomogeneous environments. The

total field is composed of a primary field E0 directly radiated by the dipole and

a secondary field Es that is emitted by the dipole and then scattered at inhomo-

geneities in the environment.
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which allows us to write for the normalized rate of energy radiation

P̄

P̄0

= 1 +
6πε0 ε

p2

1

k3
Im{p∗ · Es(r0)} (6.58)

Thus, the change of energy dissipation depends on the secondary field of the

dipole. This field corresponds to the dipole’s own field emitted at a former time. It

arrives at the position of the dipole after it has been scattered in the environment.

6.5 Fields Emitted by Arbitrary Sources

In Section 6.3.1 we have derived the vector potential A of a time-harmonic dipole

p. Using the scalar free-space Green function G0 we have then found a solution

for the vector potential of an arbitrary current distribution (see Eq. 6.33). The same

procedure can be applied to the electric field vector E.

According to Eq. (6.34) the E-field can be expressed in terms of a dyadic (ten-

sorial) Green function as E(r) = ω2µ0

↔

G0(r, r
′)p, where r′ is the origin of the dipole.

We can rewrite this equation as

E(r) = ω2µ0µ

∫

V

↔

G0 (r, r
′′)p δ(r′ − r′′) dV ′′ (6.59)

Using Eq. (6.20) for the current density of a dipole [ j
0
(r′′) = −iωpδ(r′−r′′)] and

substituting into Eq. (6.59) above, yields

E(r) = iωµ0µ

∫

V

↔

G0 (r, r
′) j

0
(r′) dV ′ (6.60)

where j
0

now is an arbitrary current density distribution within the source volume

V . We could have derived Eq. (6.60) also by following a more formal way using the

definition of the Green function as described in Section 6.1. Fig. 6.7 illustrates the

meaning of Eq. (6.60): The volume V is subdivided into infinitesimal units, each of

which occupied by a point source with weight j
0
(r′). In a similar way we find the
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rr'

E(r)j (r')
G(r,r')

V

0

Figure 6.7: Illustration of the dyadic Green function
↔

G (r, r′). The Green function

renders the electric field at the field point r due to a single point source j0 at the

source point r′. Since the field at r depends on the orientation of j the Green

function must account for all possible orientations in the form of a tensor.

solution for the magnetic field as

H(r) =

∫

V

[∇×
↔

G0 (r, r
′)] j

0
(r′) dV ′ (6.61)

Note that mathematically, the fields E and H above are particular solutions of the

differential equations (2.1) and (2.2). For a complete solution we need to super-

impose the homogeneous solutions, which are solutions of (2.1) and (2.2) with the

right sides being zero. These homogeneous solutions are fields that are present

even in absence of the sources j
0
.

6.6 Sources with Arbitrary Time-Dependence

So far we have considered the fields generated by a source that is oscillating har-

monically in time with angular frequency ω. But what if the time dependence is

arbitrary, for example, a short pulse? In these cases we can employ Fourier trans-

forms, which describe an arbitrary time dependence by a superposition of time

harmonic dependences (see Section 2.2).

Let us go back to the time-harmonic solution (6.33) of the vector potential A.

We have pointed out in Section 2.2 that Maxwell’s equations for the Fourier trans-
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forms of the fields (Ê, Ĥ, .. ) are formally the same as Maxwell’s equations for the

complex amplitudes (E(r), H(r), .. ). Therefore, Eq, (6.33) implies that

Â(r, ω) = µ0 µ(ω)

∫

V

Ĝ0(r, r
′, ω) ĵ0(r

′, ω) dV ′ (6.62)

where, according to Eq. (6.29), Ĝ0 = exp(i k(ω) |r − r′|) / (4π|r−r′|), with k(ω) =

n(ω)ω/c. ĵ0 denotes the Fourier transform of an arbitrary time-dependent current

density, that is,

ĵ0(r, ω) =
1

2π

∫ ∞

−∞

j0(r, t) e
iωt dt . (6.63)

The time-dependent vector potential A(r, t) of this current density is found by

Fourier transforming Eq. (6.62), which yields

A(r, t) =
µ0

2π
µ̃(t) ∗

∫

V

G0(r, r
′, t) ∗ j0(r

′, t) dV ′ , (6.64)

where ∗ denotes convolution in time and µ̃(t) is the Fourier transform of µ(ω).

G0(r, r
′, t) is given by

G0(r, r
′, t) =

∫ ∞

−∞

Ĝ0(r, r
′, ω) e−iωt dω . (6.65)

Inserting the expression for Ĝ0 yields

G0(r, r
′, t) =

∫ ∞

−∞

ei k(ω) |r−r
′|

4π|r−r′| e−iωt dω =
1

4π|r−r′|

∫ ∞

−∞

e−iω[t−n(ω)|r−r′|/c] dω .

(6.66)

In order to solve this integral we need to know the dependence of the index of

refraction n on frequency ω, which is referred to as dispersion.

Dispersion-free Media

To simplify the discussion, we now assume that n(ω) = n and µ(ω) = µ (dispersion-

free medium) and obtain3

G0(r, r
′, t) =

1

2

δ[t− |r− r′|n/c]
|r−r′| . (6.67)

3
∫

exp[ixy]dy = 2πδ[x].
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Thus, the Green function in time domain is a simple delta function evaluated at the

earlier time t′ = t−nR/c, where t is the current time and R is the distance between

source point r′ and observation point r.

We now insert G0(r, r
′, t) into Eq. (6.64) and obtain

A(r, t) =
µ0 µ

4π

∫

V

∫

t′

δ[t′ − |r− r′|n/c]
|r−r′| j0(r

′, t− t′) dt′ dV ′

=
µ0 µ

4π

∫

V

j0(r
′, t− |r− r′|n/c)

|r−r′| dV ′ . (6.68)

A similar equation can be derived for the scalar potential φ(r). Taken both together

we have

A(r, t) =
µ0µ

4π

∫

V

j0(r
′, t− |r− r′|n/c)

|r−r′| dV ′

φ(r, t) =
1

4πε0ε

∫

V

ρ0(r
′, t− |r− r′|n/c)

|r−r′| dV ′

(6.69)

(6.70)

These equations state that the fields A and φ at the location r and time t are deter-

mined by the sources j0 and ρ0 at location r′ at the earlier time t− |r− r′|n/c. The

earlier time is a consequence of the speed of light c: it takes a time of |r−r′|n/c for

the fields to travel a distance of |r−r′| in a medium with index of refraction n. Thus,

Maxwell’s equations explain the mysterious “action-at-distance” phenomenon dis-

cussed in the introduction of this course (see Fig. 1). It has to be emphasized that

the index of refraction n and hence the material parameters µ and ε are assumed

to be dispersion-free, which is an approximation. The only material that is truly

dispersion-free is vacuum (n = 1).

To find the fields E and H we insert the solutions of A and φ into Eqs. (6.7)

and (6.8). The calculation is not straightforward because A and φ depend on the

retarded time t−|r−r′|n/c. Therefore, an operation on the spatial coordinates (e.g.

∇×) is implicitly also an operation on time. We will not go through this exercise

and only mention that the solution is identical with Eq. (2) if we express ρ and j

with the charge and current densities of a discrete charge (c.f. Equation 3 and 4).

The result has three terms: the first term depends on the charge, the second term

on the velocity of the charge, and the third term on the acceleration of charge. It is
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the latter that is associated with electromagnetic radiation.

The expression of fields in terms of retarded time is of limited practical value.

They help us to understand the physical origin of radiation but carrying out the in-

tegrals in Eqs. (6.69) and (6.70) is nearly impossible for realistic sources. Further-

more, the time-domain approach taken here is not able to accommodate dispersive

materials. Therefore, it is generally more favorable to process the fields in Fourier

space, that is, first calculate the spectrum of the source via Fourier transforma-

tion, then calculate the spectra of the fields, and finally taking the inverse Fourier

transform to express the fields in time domain. This procedure is shown in Fig. 6.8.

6.6.1 Dipole Fields in Time Domain

We have calculated the fields of a dipole with harmonic time dependence in Sec-

tion 6.3.2. These fields were expressed in spherical vector components (see

Eq. 6.44 - 6.46). Note that these fields are the complex amplitudes and that the

time-dependent fields are arrived at by multiplying with exp[−iωt] and taking the

real part.

Remember, that Maxwell’s equations for the complex amplitudes of time har-

monic fields (Eq. 2.31–2.34) are identical with Maxwell’s equations for the Fourier

transforms of fields with arbitrary time dependence (Eq. 2.25–2.28) . Therefore,

the solutions are identical as well. For example, the spectrum of the dipole’s Eϑ

j(r,t)

j(r,ω) n(r,ω)

E(r,t)

E(r,ω)
^^

Fourier Fourier

Maxwell

Figure 6.8: Calculating the field E of a time-dependent source j. Because of

dispersion and retardation it is favorable to solve for the fields in frequency space.
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field is

Êϑ(r, ω) = −p̂(ω) sin ϑ

4πε0ε(ω)

exp[ik(ω) r]

r
k2(ω)

[

1

k2(ω) r2
− i

k(ω) r
− 1

]

, (6.71)

in analogy to the corresponding complex amplitude in Eq. (6.45). We used p̂(ω) =

|p̂(ω)|. Note that dispersion is fully accounted for through ε(ω) and k(ω). Using

the time-dependent field Eϑ(r, t) can simply be calculated using the Fourier trans-

form (2.23).

To illustrate the transformation from frequency to time domain, we assume that

the dipole is in vacuum (k = ω/c and ε = 1). Also, we will only consider the far-field

term in Eq. (6.71). The time-dependent far-field Ef
ϑ is calculated as

Ef
ϑ(r, t) =

∫ ∞

−∞

Êf
ϑ(r, ω) e

−iωt dω =
sinϑ

4πε0

1

c2 r

∫ ∞

−∞

ω2 p̂(ω) e−iω(t−r/c) dω . (6.72)

To solve this integral we set ω2 p̂(ω) = ψ̂(ω), where the Fourier transform of ψ̂(ω) is

ψ(t). Using the translation property of Fourier-transforms we obtain
∫ ∞

−∞

ψ̂(ω) e−iω(t−r/c) dω = ψ(t− r/c) . (6.73)

Thus, it remains to solve for ψ(t):

ψ(t) =

∫ ∞

−∞

ω2 p̂(ω) e−iωt dω = − d2

dt2
p(t) . (6.74)

Putting the pieces together we finally find

Ef
ϑ(r, t) = −sinϑ

4πε0

1

c2 r

d2 p(τ)

dτ 2

∣

∣

∣

∣

τ=t−r/c

(6.75)

Thus, the field at r = [r, ϑ, ϕ] and time t is determined by the dipole at r′ = 0 at

the earlier time t − r/c. As before, we find that it takes a time r/c for the “action”

to travel from the dipole to the observation point. Other terms of the dipole fields

(Eqs. 6.44–6.46) can be calculated following the same procedure. The result is

Er(t) =
cosϑ

4πε0

[

2

r3
+

2

c r2
d

dτ

]

p(τ)
∣

∣

∣

τ=t−r/c

Eϑ(t) = −sin ϑ

4πε0

[

1

r3
+

1

c r2
d

dτ
+

1

c2r

d2

dτ 2

]

p(τ)
∣

∣

∣

τ=t−r/c

Hϕ(t) = −sin ϑ

4πε0

√

ε0
µ0

[

1

c r2
d

dτ
+

1

c2r

d2

dτ 2

]

p(τ)
∣

∣

∣

τ=t−r/c

(6.76)

(6.77)

(6.78)
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We see that the far-field is generated by the acceleration of the charges that con-

stitute the dipole moment. Similarly, the intermediate-field and the near-field are

generated by the speed and the position of the charges, respectively.

6.7 The Lorentzian Power Spectrum

The spectrum of various physical processes is characterized by narrow lines de-

scribed by Lorentzian line shape functions. Examples are the spontaneous emis-

sion by atoms or molecules, laser radiation, or microwave resonators. To under-

stand the origin of Lorentzian line shapes we consider a dipole located at r0 = 0

that starts to oscillate at time t = 0. The observer is assumed to be at large dis-

tance from the dipole, which allows us to restrict the discussion to the dipole’s

far-field Ef
ϑ(r, t).

The equation of motion for an undriven harmonically oscillating dipole is

d2

dt2
p(t) + γ0

d

dt
p(t) + ω2

0p(t) = 0 . (6.79)

The natural frequency of the oscillator is ω0 and its damping constant is γ0. The

solution for p is

p(t) = Re
{

p0 e
−iω0

√
1−(γ2

0 /4ω
2
0 ) t e−γ0 t/2

}

. (6.80)

Typically, the damping constant is much smaller than the oscillation frequency

(γ0 ≪ ω0), which implies
√

1− (γ2
0/4ω

2
0) ≈ 1.

The spectrum Êϑ(ω) detected by the observer is (cf. Eq. (2.24))

Êϑ(ω) =
1

2π

∫ ∞

r/c

Eϑ(t) e
iωt dt. (6.81)

Here we set the lower integration limit to t = r/c because the dipole starts emitting

at t = 0 and it takes the time t = r/c for the radiation to propagate to the observa-

tion point. Therefore Eϑ(t< r/c) = 0. Inserting the solution for the dipole moment

from Eq. (6.80) and making use of γ0 ≪ ω0 we obtain after integration

Êϑ(ω) =
1

2π

p0 sinϑω2
0

8πε0c2r

[

exp(iωr/c)

i(ω+ω0)− γ0/2
+

exp(iωr/c)

i(ω−ω0)− γ0/2

]

. (6.82)
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The energy radiated into the unit solid angle dΩ = sinϑdϑdϕ is calculated as

dW

dΩ
=

∫ ∞

−∞

I(r, t)r2 dt = r2
√

ε0
µ0

∫ ∞

−∞

|Eϑ(t)|2 dt = 2πr2
√

ε0
µ0

∫ ∞

−∞

|Êϑ(ω)|2 dω ,
(6.83)

where we applied Parseval’s theorem and used the definition of the intensity I =
√

ε0/µ0 |Eϑ|2 of the emitted radiation. The total energy per unit solid angle dΩ and

per unit frequency interval dω can now be expressed as

dW

dΩdω
=

1

4πε0

p2
0 sin2ϑ ω4

0

4π2c3γ20

[

γ20/4

(ω−ω0)2 + γ20/4

]

(6.84)

The spectral shape of this function is determined by the expression in the brackets

known as the Lorentzian lineshape function. The function is shown in Fig. 6.9. The

width of the curve measured at half its maximum height is ∆ω = γ0, and is called

“radiative linewidth.”

Integrating the lineshape function over the entire spectral range yields a value

of πγ0/2. Integrating Eq. (6.84) over all frequencies and all directions leads to the

totally radiated energy

W =
p2
0

4πε0

ω4
0

3 c3 γ0
. (6.85)

ω0

ω

1

0.5 γ0

Figure 6.9: Lorentzian lineshape function as defined by the expression in brackets

in Eq. (6.84).
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This value is equal to the average power P̄ radiated by a driven harmonic oscillator

divided by the linewidth γ0 (cf. Equation 6.49).


